
 eBook: Agile
Methodology Series

Table of Contents

Chapter 1: What is Agile Development? 3

Chapter 2: 7 Myths of Agile Development 32

Chapter 3: Agile Story Writing 43

Chapter 4: Agile Estimating 65

Chapter 5: Agile Release & Iteration Planning 80

Chapter 6: Agile Room (Team) Dynamics 100

© 2014 Intelliware Development Inc.

What is Agile Development?

Once primarily the domain of early adopters, Agile flavoured methodologies have

steadily gained acceptance as a mainstream approach to software development.1,2,3

Although Agile has come to mean many different things to different people, at its core,

it is a philosophy that guides a set of technically rigorous development practices. It

has been adopted by a growing number of organizations to lower the risk that is

inherent in software development and to deliver better software as defined by the end

user. As more teams adopt Agile practices and more companies transform to Agile

cultures, we continue to learn together about the best practices and benefits of

developing software in an Agile manner.

This introductory paper is designed to provide a basic understanding of Agile software

development.

© 2013 Intelliware Development Inc.

© 2013 Intelliware Development Inc.

5

The Foundations of Agile

A quick lesson in software development history provides context for both how

and why Agile is important. Agile is typically seen as an evolutionary step

forward from the “Waterfall” method, which is the traditional – and still most

prevalent – way of developing software.

Top 10 Agile Links

1. agilemanifesto.org

2. en.wikipedia.org/wiki/Agile_software_development

3. agilealliance.org

4. codeproject.com/Articles/604417/Agile-software-

development-methodologies-and-how-t

5. objectmentor.com/omSolutions/agile_what.html

6. agilemethodology.org/

7. mountaingoatsoftware.com/agile/new-to-agile-or-

scrum

8. allaboutagile.com/what-is-agile-10-key-principles/

9. versionone.com/Agile101/Agile-Development-

Overview/

10. i-proving.com

http://www.intelliware.com/
http://www.agilemanifesto.org
http://www.en.wikipedia.org/wiki/Agile_software_development
http://www.en.wikipedia.org/wiki/Agile_software_development
http://www.agilealliance.org
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-t
http://www.objectmentor.com/omSolutions/agile_what.html
http://www.objectmentor.com/omSolutions/agile_what.html
http://www.objectmentor.com/omSolutions/agile_what.html
http://www.agilemethodology.org/
http://www.agilemethodology.org/
http://www.mountaingoatsoftware.com/agile/new-to-agile-or-scrum
http://www.mountaingoatsoftware.com/agile/new-to-agile-or-scrum
http://www.mountaingoatsoftware.com/agile/new-to-agile-or-scrum
http://www.mountaingoatsoftware.com/agile/new-to-agile-or-scrum
http://www.mountaingoatsoftware.com/agile/new-to-agile-or-scrum
http://www.mountaingoatsoftware.com/agile/new-to-agile-or-scrum
http://www.mountaingoatsoftware.com/agile/new-to-agile-or-scrum
http://www.mountaingoatsoftware.com/agile/new-to-agile-or-scrum
http://www.mountaingoatsoftware.com/agile/new-to-agile-or-scrum
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.allaboutagile.com/what-is-agile-10-key-principles/
http://www.versionone.com/Agile101/Agile-Development-Overview/
http://www.versionone.com/Agile101/Agile-Development-Overview/
http://www.versionone.com/Agile101/Agile-Development-Overview/
http://www.versionone.com/Agile101/Agile-Development-Overview/
http://www.versionone.com/Agile101/Agile-Development-Overview/
http://www.versionone.com/Agile101/Agile-Development-Overview/
http://www.versionone.com/Agile101/Agile-Development-Overview/
http://www.i-proving.com
http://www.i-proving.com
http://www.i-proving.com

© 2013 Intelliware Development Inc.

6

The Waterfall Method

Waterfall is a sequential approach to software development. As Figure

1 illustrates, it is a multi-step process with phases executed in a

stepwise manner. First, software requirements are defined. This is

followed by software design, then development and finally, integration

and testing. Often steps are defined by gates, at which point some

sort of approval, often involving a document, is required before the

project can proceed to the next step. Hence, the approach is also

often referred to as, “document driven development”.

Waterfall has obvious appeal. It provides an easily understandable

process that seems to progress in a logical sequence. Moreover, it’s a

familiar process because it is similar to how we build other things,

such as buildings and cars. The gates provide a form of risk

management, in that the process cannot proceed to the next step

without an authorization of the preceding step.
Figure 1: The Waterfall Process of Software Development

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

7

The Problem With Waterfall

The Waterfall approach works well if everything is straightforward, simple and

predictable. But therein lies the problem: software development is rarely

straightforward, simple and predictable. Waterfall poses the following risks:

1. Startup risk: Many projects fail to get off the ground because of the “analysis

paralysis” that is symptomatic of the Big Design Up Front (BDUF) approach. Projects

get stuck at a gate while various stakeholders hesitate to commit to a sign off.

2. Integration risk: The sequential approach of Waterfall development leaves

integration until near the end of development. Consequently, there is significant risk

that the software will have greater integration issues since it will be done all at once.

3. Cost risk: The cost of change in Waterfall projects is relatively high (see Figure

2) because it tries to minimize change by using BDUF (Big Design Up Front).

Figure 2: The Cost of Change: Traditional (Waterfall) vs. Agile4

The Cost of Change

Waterfall

Agile

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

8

The Problem With Waterfall (continued)

4. Delivery risk: Waterfall has a relatively high risk of failing to meet

deadlines or accommodate customer needs. Business needs inevitably

change throughout the development process (which can range from a few

months to years) and the Waterfall approach, by nature, does not take this

into account. Also, in a document driven development environment, a

development team may place more focus on delivering documentation

than on customer features.

5. Technical risk: Waterfall lacks rigorous practices of more modern

methodologies. These practices include unit testing, collaborative code-

base and frequent builds, all of which help ensure technical excellence.

To understand how these risks are avoided in modern approaches, it is

helpful to review a few key historical milestones in software development

methodologies.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

9

From Waterfall to Agile

The Waterfall method has been prevalent in software development since the mid ’50s. It wasn’t until the late

‘60s and early ‘70s that references to iterative software development were made.5 In 1970, Winston W.

Royce was credited as one of the first people to describe the Waterfall approach and also be one of the first

to highlight its flaws, arguing for an iterative, Agile-like approach to software development. 6

In the mid ‘80s, after decades of experience with software developed using the Waterfall methodology,

change was needed. Software projects were earning the reputation of often being over budget, behind

schedule, and failing to meet the needs of end users. Overly complex software was the norm (Figure 3 pokes

fun at how this tends to happen when using BDUF). Then, in 1986, Frederick P. Brooks stated the following in

his landmark paper, “No Silver Bullet-Essence and Accident in Software Engineering”:

…it is really impossible for clients, even those working with software engineers, to specify completely,

precisely, and correctly the exact working requirements of a modern software product before having

built and tried some versions of the product they are specifying.

Therefore one of the most promising of the current technological efforts…is the development of

approaches and tools for rapid prototyping of systems as part of the iterative specification of

requirements.7 – Frederick P. Brooks

Over the next fifteen years, several “lightweight methodologies” were developed. In 2001, a group of software

leaders, in a field known at the time as lightweight methods, met to bring these new methodologies together

to find a better way to build software. The result was the Agile Manifesto.

Figure 3: The problem with guessing customer requirements

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

10

The Basics of Agile

Agile software development is comprised of

Values, Principles and Methodologies. The 4 Agile

Values serve as the foundation of Agile philosophy.

The 12 Agile Principles embody the Values and

provide more concrete examples of what Agile

means at a lower level. They form the Agile

philosophy that guides Agile Methodologies.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

11

Agile Values

Agile is a somewhat loose term. If it had a motto, it would be embrace change.8 The Agile

Manifesto is accepted as the official definition of Agile and expresses the four foundational

Values of the philosophy:

Manifesto for Agile Software Development9

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith,

Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave

Thomas.

© 2001, the above authors this declaration may be freely copied in any form, but only in its entirety through this notice.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

12

Agile Principles

The 4 main Values of the Agile Manifesto guide the twelve Principles of Agile development,

which can be summarized as follows:

1. Satisfy the customer through early and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development.

3. Deliver working software frequently.

4. Bring business people and developers together to work throughout the project.

5. Build projects around motivated individuals.

6. Communicate face-to-face when possible.

7. Measure progress primarily through working software.

8. Develop at a sustainable pace.

9. Focus on technical excellence and good design.

10. Simplicity, maximizing the amount of work not done, is essential.

11. Enable teams to self-organize.

12. Reflect at regular intervals on how the team can become more effective.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

13

Agile Methodologies

Agile software development is perhaps best understood as a philosophy that guides several groups of

practices known as Methodologies. These Methodologies, which are like recipes to follow to help you

be Agile, include Scrum, Kanban, XP / Extreme Programming, Lean Programming and Agile

Modeling.10 Collectively, they comprise only a selection of the “lightweight methodologies” that can

be used to be Agile. While each Methodology has its nuances, the important thing to understand is

there is more than one way to practice Agile development.

While ground-breaking at the time, the Agile Manifesto has led to misconceptions about Agile as a

method-less, process-less approach. These claims are false. Many are based upon straw man

fallacies – oversimplifications of arguments to make the Agile Manifesto easier to attack. People

claim that “Agile has no documentation”. It’s a fallacious argument. Agile has documentation but

places a greater value on working software. As Agile co-creator Jim Highsmith said:

“The Agile movement is not anti-methodology, in fact, many of us want to restore credibility to

the word methodology. We want to restore a balance. We embrace modeling, but not in order

to file some diagram in a dusty corporate repository. We embrace documentation, but not

hundreds of pages of never-maintained and rarely-used tomes. We plan, but recognize the

limits of planning in a turbulent environment.”11 - Jim Highsmith, for the Agile Alliance

In addition to the Values, Principles and Methodologies, there are additional characteristics that are

common to organizations that have adopted Agile philosophies.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

14

Agile Process

The Agile process takes a large software project and divides it into

many smaller pieces to be developed incrementally and iteratively.

Studies have found that project size and success are negatively

correlated, i.e. the shorter the project the higher the rate of success.12

The Agile approach helps reduce project size by effectively making

several mini-projects. It is the iterative approach that distinguishes Agile

from other methods.

Unlike traditional approaches, Agile has multiple planning and

development phases, known as iterations. Each iteration tends to be a

week or so of work. The development team and the customer team

work together to prioritize what will be included in each iteration. The

end result of the relatively short sprint is working software delivered to a

production-like environment where it can be tested by the customer.

This iterative process is repeated until the software project is

completed. Along the way, depending on the customer’s needs, there

can be a series of releases – software released to the end-user.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

15

Agile Practices

There are dozens of Agile practices. Not all are used by Agile practitioners,

but those looking to be Agile should be aware of these key practices. Here

are some examples to help illustrate how the Agile values have been

applied into more concrete practices.

Daily Standup (Stand-Up Meetings)

Also referred to as a Daily Scrum, Agile teams have daily meetings to

briefly share need-to-know information. These meetings are held to keep

the development team on the same page, not to provide a status update to

the project manager. Brevity is the key to these meetings. In Daily Scrum

meetings, participants answer three questions13 :

1. What did I do yesterday?

2. What will I do today?

3. What problems are preventing me from making progress?

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

16

Agile Practices

User Stories

A User Story is a short description of a function that an

end-user would want. There are three elements to a

User Story:

• a written description for planning (card),

• a conversation about the story to better

understand it (conversation), and,

• a series of tests to confirm the story

(confirmation).14

Figure 4 provides an example of a User Story card.

These are written from the perspective of the end-user

in language that is understandable to them. Stories

serve as a form of currency between customers and

developers that both parties understand.
Figure 4: An example of a User Story for a Financial Services System

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

17

Agile Practices

Automated Testing

With Agile, a key aspect is the implementation of automated tests. Formal

and thorough automated tests help ensure the delivery of working software

throughout development and eliminate defects at the source. Developers

write test code using any number of available frameworks (e.g., JUnit is the

go-to Java framework) at the same time as they develop the code. In this

manner they build a safety net for the working code that allows them to

make changes and have confidence that other features haven’t been

broken. It also greatly reduces the length of time between the origin and the

discovery of a bug.

Acceptance tests are functional tests for a User Story. In other words, they

are programmed checks to ensure that existing features continue to work

as defined as new features are added. Ideally, acceptance tests are defined

by the customer and coded by developers. Running acceptance tests help

prove to the customer that the Story is done. After acceptance tests are

created, they are run automatically and repeatedly so that the newly

developed code works.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

18

Agile Practices

Automated Builds

A key principle for Agile methodologies is to have running software at all

times. In practice, the only way to do this is by ensuring that all software

development is regularly and automatically compiled, built, deployed and

tested. This is usually done many times a day and at least once every time

a developer “checks in” code as a main part of the development branch.

The advantages for automating builds are huge. They reduce troublesome

deployment and integration problems and they provide a reliable

environment for demonstrations and testing.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

19

Agile Practices

Agile Planning: Release, Iteration and Task

In Agile development, planning is divided into three levels: release, iteration and task. At the start of the

project, the developers and the customer come together to discuss the major User Stories (features)

that are needed in the software. They focus on identifying must-have features and roughly prioritizing

and estimating them, which helps facilitate Release, Iteration, and Task planning.

Release planning: A customer-driven planning session. The developers and the customer decide on a

date for the first in a series of product releases. They decide what stories to incorporate in the release.

The Developers drive the effort estimates for the stories while the customer drives the selection of the

stories. Effort estimates take various forms depending on the preferences of the development and

customer teams.

Iteration planning: A joint effort between the customer and developers to do part of the release plan.

As in release planning, the customer defines and prioritizes the User Stories and the developers

estimate the effort it will take to develop them. Naturally, the timeline is shorter for an iteration than that

of a release. It is often a matter of weeks, not months, for an iteration.

Task planning: After planning the iteration, the development team breaks down the stories for the

iteration into a series of tasks. A list of the tasks is documented in the project room where it is highly

visible; Post-it® notes and whiteboards are common tools to help with task planning. Developers sign up

for tasks and assign estimates to them.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

20

Agile Practices

Pair Programming

This practice has two developers working together on a programming task.

Typically, one person takes the role of entering the code (the driver) while

the other thinks about the next steps and how this code will fit into the

bigger picture (the navigator).

A common objection to pair programming is that it is wasteful to have two

people doing the work of one. While it may take more developer time to

program this way, the output often justifies it. As one study found, pairing

takes 15% more effort than one person working alone but produces results

more quickly and with 15% fewer defects.16 Results will vary on a case-to-

case basis, but when considering pair programming, ask whether a

reduction in defects is worth added effort and resources. Also, pairing is not

a full-time requirement. Teams often set their own working rules around

when it is advantageous to pair.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

21

Agile Practices

Continuous Integration

This practice has the development team integrate their code to the

system several times per day. Before integrating completed code,

the developer runs a series of tests to make sure the code to be

integrated won’t break any existing functionality or tests in the

system. To do so, the developer runs all of the tests for the system

and makes any necessary fixes. The more frequently code is

integrated, the less time it takes to merge and find errors.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

22

Agile Practices

Retrospectives

A retrospective is a meeting to look back over an iteration, release, or

project, specifically to discuss what worked well, what could be improved,

and most importantly, how to translate the lessons learned into actionable

change. They are a forum for the team to improve upon their process.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

23

The Business Benefits of Agile

Industry View

The appeal of an Agile approach to develop software incrementally and

iteratively continues to grow. Agile helps lower risks associated with

delivery, scope and budget that are common to every software

development project.

One MIT Sloan Management Review study on software

development practices found that early delivery of a partially

functioning system and frequent deliveries throughout

development are both positively correlated with higher quality

software.17 Agile enables the collaboration between the

development team and the customer, which offers the mutual

benefit of mitigating the inherently high risk of software

development.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

24

The Business Benefits of Agile

Industry View

Version One’s 7th Annual State of Agile Development Survey found

that 90% of those who implemented Agile reported an improved ability

to manage changing priorities18. In addition, most (70%) believed that

Agile projects have a faster time to completion.19

Finally, in 2009, Dr. David F. Rico’s research and synthesis of

available data on Agile versus traditional methods20 identified many

compelling business benefits. In an analysis of 23 Agile versus 7,500

traditional projects21, Agile projects stacked up impressively well:

• 41% were better in terms of overall business value

• 83% achieved a faster time-to-market

• 50% were deemed to have higher quality

• 50% cost less

• 83% were seen as more productive

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

25

The Business Benefits of Agile

Our View

Intelliware has been involved with Agile since the very early days of Kent

Beck’s articulation of his Extreme Programming principles in the late

1990’s, at a time pre-dating the Agile Manifesto. For us, Beck and the rest

of the Agile pioneers articulated and validated many of the frustrations and

challenges we had experienced using Waterfall and BDUF. XP, and by

extension, Agile, offered an alternative that made sense and put simply,

worked.

Over the years, different projects have enjoyed a range of benefits as a

result of the application of Agile philosophies. However, there are four key

business benefits that our clients view as particularly important.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

26

The Business Benefits of Agile

Our View

1. Get unstuck.

In all organizations, it is often very difficult to just get started. With

Waterfall, there are unreasonable demands to “nail the requirements”,

which fuels analysis paralysis. With Agile, a project can get started with

high-level requirements and a simple gating of the first level of useful

functionality. You need to have a high level map of where you are headed,

but the nitty-gritty detail work of fine-grained requirements, design, coding

and testing can be done more efficiently and with a higher degree of

quality when they are done in parallel.

Agile helps you get going. If you don’t start, you won’t get to the business

benefits of your project until it’s too late.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

27

The Business Benefits of Agile

Our View

2. Change is built into the process.

The biggest fallacy of Waterfall is that you can “nail the requirements”. All

projects have change, and the longer they run, the more changes your

project will require. If all your software project plans are tied up in an

elaborate Microsoft Project®-style plan with dependencies, you and your

organization are in for a rough ride.

Agile software development builds change into the process from the get-go.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

28

The Business Benefits of Agile

Our View

3. Risk is managed, your project is delivered.

Because change is built right into the process, and Agile depends on robust

technical practices such as automated testing and automated builds, you

have a running production system as early as day one. As the system grows,

and the project endures changes in requirements and design, the core

application is kept running. The risks associated with change are dealt with

daily, and so, at the end of the project, there isn’t a big bang release with a

mountain of hidden problems.

When steered properly, and with discipline, Agile projects get delivered.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

29

The Business Benefits of Agile

Our View

4. Deliverable quality is higher.

Key drivers for better application quality include a number of the rigorous

Agile technical practices such as automated tests and builds. But another,

less talked about contributing factor to overall project quality is the effect

Agile processes have on the people involved with the project. Because of the

cross-functional nature of Agile teams, questions get answered quickly,

roadblocks can be removed, and the team is motivated to work together

towards a common end goal. It’s not a year-long project; it’s a series of one

or two week sprints with real deliverables in a short period of time. It’s a

satisfying and energizing manner in which to work.

Stronger technical practices and greater overall team motivation all combine

to result in higher quality project deliverables.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

30

Is Agile right for you?

A transition to Agile is not a trivial effort, nor is it necessarily for everyone. A

common pitfall is to try a few Agile practices that seem convenient and ignore

those that seem difficult. This often results in a failed transition based on faulty

assumptions and missing pieces. A truly sustainable Agile transformation requires

a significant change in culture within your organization. Take time to really

appreciate what Agile entails, understand the main barriers to adoption and

consider its compatibility with your organization before starting implementation.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

31

Sources

1 Scott M. Ambler and Matthew Holitza. Agile for Dummies. Hoboken: John Wiley & Sons, 2012. Print.
2 Krill, Paul. “Agile software development is now mainstream”. InfoWorld. The IDG Network. 22 Jan. 2010. Web.
3 Heusser, Matthew. “Has Agile Software Development Gone Mainstream?” CIO.com. CXO Media Inc. 12 Aug. 2013.
4 Ambler, Scott. “Examining the Agile Cost of Change Curve”. Scott W. Ambler + Associates. Ambysoft Inc. 2002. Web.
5 Larman, Craig and Basili, Victor R. “Iterative and Incremental Development: A Brief History”. C2.com. 21 Apr. 2011. Web.
6 Winston, Royce, W. “Managing the Development of Large Software Systems", Proceedings of IEEE WESCON 26 (1970). Web.
7 Brooks, Frederick P. “Silver Bullet: Essence and Accidents of Software Engineering”. Pgs. 13-14 Computer In Computer, Vol. 20, No. 4. (1987). Web.
8 Craig Larman. “Agile & Iterative Development: A Manager’s Guide”. Boston: Pearson Education. 2004. Print.
9 Beck, Kent et al. “Manifesto for Agile Software Development”. Agilemanifesto.org. 2001. Web. 15 Sept, 2013.
10 Scott M. Ambler and Matthew Holitza. Agile for Dummies. Hoboken: John Wiley & Sons, 2012. Print.
11 Highsmith, Jim. “History: The Agile Manifesto”. Agilemanifesto.org. 2001. Web.
12 Craig Larman. “Agile & Iterative Development: A Manager’s Guide”. Boston: Pearson Education. 2004. Print.
13 Shore, James, Warden, Shane. The Art of Agile Development. Sebastopol: O’Reilly Media, Inc., 2008. Print.
14 Mike Cohn. “User Stories Applied: For Agile Software Development”. Boston: Pearson. 2004. Print. Reference also to Ron Jeffries (2001)
15 Wake, Bill. “INVEST in Good Stories, and SMART Tasks”. XP123. Web.
16 Shore, James, Warden, Shane. The Art of Agile Development. Sebastopol: O’Reilly Media, Inc., 2008. Print.
17 MacCormack, Alan. “Product-Development Practices That Work: How Internet Companies Build Software”. MIT Sloan Management Review. 2001. Web.
18 VersionOne®, 7th Annual State of Agile Development Survey © 2013.
19 VersionOne®, 7th Annual State of Agile Development Survey © 2013.
20 Dr. David F. Rico, PMP, CSM, “Business Value of Agile Methods – Cost and Benefit Analysis” davidfrico.com/rico09e.pdf, 2009.
21 Mah, M. (2008). Measuring agile in the enterprise: Proceedings of the Agile 2008 Conference, Toronto, Canada.

http://www.intelliware.com/
http://www.infoworld.com/d/developer-world/agile-software-development-now-mainstream-190
http://www.cio.com/article/737980/Has_Agile_Software_Development_Gone_Mainstream_?page=3&taxonomyId=3040
http://www.agilemodeling.com/essays/costOfChange.htm
http://c2.com/cgi/wiki/wiki?HistoryOfIterative
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://faculty.salisbury.edu/~xswang/Research/Papers/SERelated/no-silver-bullet.pdf
http://agilemanifesto.org
http://agilemanifesto.org/history.html
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://sloanreview.mit.edu/article/productdevelopment-practices-that-work-how-internet-companies-build-software/
http://sloanreview.mit.edu/article/productdevelopment-practices-that-work-how-internet-companies-build-software/
http://sloanreview.mit.edu/article/productdevelopment-practices-that-work-how-internet-companies-build-software/

Introduction

There are dozens of myths about Agile development. But before jumping into

specific misconceptions, let's have a look at some common business challenges:

For senior-level execs: do you value revenue growth or cost containment?

For project managers: do you value team efficiency or effectiveness?

For developers: do you value code quantity or quality?

In each scenario, you probably struggled to make a choice given that your two

options were not mutually exclusive.

Posing the question this way creates a false dilemma since you likely value both

options but to varying degrees. So the better question is, of the two options, which do

you value more?

Introduction (continued)

The Agile Manifesto evolved through dilemmas like those just

mentioned. Often two opposing approaches, such as

responding to change versus following a plan, were

deliberated upon until the authors of the Manifesto decided

that it would be best if they valued one approach more than

the other, instead of choosing one over the other.

Unfortunately, many of the myths about Agile are based upon

straw man fallacies: oversimplifications of arguments to make

them easier to attack. For example, the Agile Manifesto states

that Agile values working software over comprehensive

documentation. Agile detractors often oversimplify this idea as

an either/or state: working software or comprehensive

documentation.

What follows are the most common Agile Myths and a rebuttal

to these false claims.

Figure 1: The Agile Manifesto
Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler,

James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin,

Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas.

© 2013 Intelliware Development Inc.

35

Agile development is a

methodology

While not as common as the other 6 myths, this one needs to be

addressed first. Agile development is not a methodology – it is a

set of shared values and principles that guide a set of technically

rigorous development methodologies. These methodologies

include, but are not limited to: Scrum, Kanban, XP (Extreme

Programming) and Lean Software Development.

Authors of “The Art of Agile Development”, James Shore and

Shane Warden, argue, “Agile development is a philosophy. It’s a

way of thinking about software development.” We view Agile as a

philosophy that addresses the forces at work in organizations that

are striving to deliver high quality software applications to the

customer and their often evolving needs.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

36

Agile is undisciplined

This myth is based on a perceived lack of process. Agile places greater value on individuals

and interactions than on processes and tools. Therefore, some conclude illogically that Agile

lacks process and therefore discipline.

This myth comes in many flavours: “Developers get to do what they like.”2 Agile = anarchy.3

Agile is “cowboy programming”. 4 Agile means “code and fix”.5

Incomplete Agile transitions help keep this myth alive, as some companies have adopted the

easier parts of Agile while ignoring the harder parts.6 This is sometimes referred to as

“Agilefall”.

There is process to Agile, though it isn’t the one-track, sequential process of traditional

development. Agile processes often occur in parallel with one another and are repeated.7 In

fact, many argue that Agile actually requires a greater level of discipline than more traditional

approaches.8,9 In our experience the ‘agility’ in application delivery is enabled through a very

disciplined approach to technical application development practices.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

37

Agile has no planning

“Plans are worthless, but planning is everything.”10 - Dwight D. Eisenhower

Eisenhower made the above comment to a National Defense Committee in the context of

planning for emergencies. But there is a reason why it has been quoted by Agile

proponents: both national defense emergencies and end-user software needs are

unforeseen.

To be agile is to be able to move quickly and easily. Planning can inhibit agility. Some

illogically conclude that all planning inhibits agility. As English author Lewis Carroll

originally said, “if you don't know where you are going [no plan], any road will get you

there.” The right amount of planning is essential to properly guide your ‘agility’.

In Agile development, Big Design Up Front (BDUF) is avoided; planning occurs throughout

the development cycle and is spread across the entire team.11 It avoids the situation where

overly detailed plans made at the start of a project become out of sync with the technical

and business needs as the project progresses.12 Agile aims to work the plan, not work to

the plan. The result is a constant focus on business value.

Throughout development, the team adapts to make sure the plan reflects the current needs

of the customer. Therefore, Agile welcomes the changes that are inevitable in software

development and plans accordingly. Release and iteration plans detail both what needs to

be done and how it will be done. Delivering working software throughout the development

process at agreed upon deadlines requires planning.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

38

Agile has no documentation

The Agile founders met to create an alternative to document driven development.13 They

did not set out to remove documentation from software development. Agile simply places

more value on working software than on comprehensive documentation because of the

dynamic nature of software development. As requirements are modified, the development

changes course and the software evolves. This does not preclude any development team

from generating as much documentation as the project requires. Indeed, the natural

process of Agile development tends to generate a greater amount of (and more accurate)

documentation than BDUF methodologies.

Comprehensively documenting a system (particularly when it’s done “up front”) can be a

poor use of time since changing requirements renders documents obsolete or inaccurate.

Also, there is a risk of misunderstanding between the customer and developer when relying

on written documentation to express software requirements. However, there are situations

(documenting interfaces between systems, for instance) in which documentation is

absolutely required. There is nothing inherent in Agile that prevents you from creating as

much documentation as your project requires, especially if the customer values it. Agile just

suggests you be smart about it and that documentation not take on a life of its own.

Documentation that provides value to the customer is much different than documentation

that is produced for the sake of documentation or to support a process.

To quote Mike Cohn, in a Waterfall approach, “Customers will get the developers’

interpretation of what was written down, which may not be what they wanted.”14 The

iterative delivery of working software effectively replaces much, though not all, of the

comprehensive upfront requirements documentation. A picture is worth a thousand words.

Working software is worth even more.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

39

Agile has no upfront design/architecture

Agile stresses a simplification of upfront design, not the elimination of upfront

design. As argued by Robert C. Martin, one of the founders of the Agile

Manifesto, Big Design Up Front (BDUF) is “harmful” but little upfront design

(LUFD) is “absolutely essential”.15

The harm from BDUF can take shape in an overly complex product, which is a

typical outcome for projects developed using the Waterfall approach. Agile

development stresses simple upfront design to focus on the foundation and

general structure of the software. Agile developers avoid building software

features that may or may not be needed; they build for the current need and get

feedback in the iterative delivery of software to the client.

In XP, an Agile method, there is a principle called YAGNI (You Aren’t Gonna

Need It) to help focus on designing at the right time in the process.16 As with

drawing, Agile recommends beginning with a sketch to explore the presentation

of a concept. If the concept is validated, then the details are added.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

40

Agile does not scale

Scaling software development is difficult, regardless of approach. Some

believe that Agile may work fine for small projects but not for large,

complex projects.

Agile encourages breaking large, complex projects into many small,

manageable pieces. This means that it can indeed scale – even for big

projects. Of course, it really is a matter of approach. Some Agile

practices need to be tweaked for the realities of large projects. For

example, the larger the team, the shorter the development cycle should

be. By keeping the development cycles short, the project remains a

series of small, manageable projects. As well, face-to-face

conversations will likely be limited in large projects, so technologies that

enable the closest representation of this form of communication, such

as videoconferencing, should be used. Finally, since continuous

integration can be a significant challenge on large Agile projects, there

should be an integration team.17

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

41

Agile is just another fad

A fad is, by definition, short-lived. Agile has been around for over a decade.

Some of the central tenets have been in practice since the ‘70s. Agile has been

around for too long to be a fad, especially when one compares it to the

relatively short history of software development. This myth may be propagated

by those who comprise the laggards of Agile adoption – many of whom tend to

resist change.

Agile, as a philosophy (not a methodology), was created in response to the

inherent complexities of software development; therefore, as long as there is

software development, Agile will exist.

An alternate explanation may be that Agile is still in a “hype cycle” and

therefore, still subject to possibility of being a fad. In Gartner’s 2010 report,

“Hype Cycle for Application Development”, Agile Development Methods were

considered as, “sliding into the trough (of disillusionment)”.18 That may sound

ominous, but for those who believe in this model, it is merely a growing pain.

Java went through this trough before reaching its plateau.19 Agile continues to

develop. In 2012, Gartner also stated that Agile’s move through the Trough of

Disillusionment is a “normal part of any IT trend that is going mainstream” and

that “the long term trend of agile is working well in more and more companies,

so the future of agile is still promising.”20
Figure 4: Gartner's Hype Cycle

Gartner’s Hype Cycle

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

42

Conclusion

Myths and criticisms about Agile software development abound. Don’t let them

impede your progress. Agile is not a fad – the forces that have led us to Agile

are not going away. Regardless of your proficiency with Agile, it is important to

be mindful of these common myths and criticisms because Agile requires

organizational buy-in. Therefore, you will need your colleagues to understand

Agile, which will likely require you to debunk a few of these myths yourself. If

you can succeed at this task, you will increase your chances of fully realizing

the business benefits of Agile, such as faster time-to-market, higher quality

software, lower costs and a greater ability to adapt to changing priorities.

http://www.intelliware.com/

© 2013 Intelliware Development Inc.

43

Sources

1 Shore, James, Warden, Shane. The Art of Agile Development. Sebastopol: O’Reilly Media, Inc., 2008. Print.
2 Kelly, Allan. “Top Twelve Myths of Agile Development.” The Agile Connection, TechWell Corp. 27 Mar, 2013. Web.
3 Löffler, Marc. “7 Agile Myths”. The Agile Zone. 29 Jan, 2013. Web.
4 “O’hEocha, Colm. “Agile – Adoption: Agile Myths”. AgileInnovation Ltd. www.agileinnovation.eu. 2010. Web.
5 Holler, Robert. “Five Myths of Agile Development”. VersionOne. 2010. Web.
6 Rasmusson, Jonathan. “Agile Myths”. Agile in a Nutshell. Web.
7 Gregory S. Smith, “What an Agile Process Looks Like”. CIO.com. 23 Jan., 2008. Web.
8 Scott M. Ambler and Matthew Holitza. Agile for Dummies. Hoboken: John Wiley & Sons, 2012. Print.
9 Holler, Robert. “Five Myths of Agile Development”. VersionOne. 2010. Web.
10 From a speech to the National Defense Executive Reserve Conference in Washington, D.C. (November 14, 1957) ; in Public Papers of the Presidents of the

United States, Dwight D. Eisenhower, 1957, National Archives and Records Service, Government Printing Office, p. 818 : ISBN 0160588510, 9780160588518
11 Kelly, Allan. “Top Twelve Myths of Agile Development.” The Agile Connection, TechWell Corp. 27 Mar, 2013. Web
12 Holler, Robert. “Five Myths of Agile Development”. VersionOne. 2010. Web.
13 Highsmith, Jim. “History: The Agile Manifesto”. Agilemanifesto.org. 2001. Web.
14 Mike Cohn. User Stories Applied For Agile Software Development. Boston: Peasron Education, 2004. Print.
15 Martin, Robert C. (“Uncle Bob”), “The Scatology of Agile Architecture”. Uncle Bob Consulting LLC. April 25, 2009. Web.
16 Rasmusson, Jonathan. “Agile Myths”. Agile in a Nutshell. Web.
17 Jutta Eckstein and Nicolai Josuttis. Scaling Agile Processes: Agile Software Development in the Large. Agility Days 2002. Web.
18 Janes, Andrea, and Succi, Giancarlo. “The Dark Side of Agile Software Development”. Darkagilemanifesto.org. Free University of Bolzano/Bozen. 2012. Web.
19 Janes, Andrea, and Succi, Giancarlo. “The Dark Side of Agile Software Development”. Darkagilemanifesto.org. Free University of Bolzano/Bozen. 2012. Web.
20 Wilson, Nathan. “The Trough of Disillusionment”. Gartner. 27 July, 2012. Web.

http://www.intelliware.com/
http://www.agileconnection.com/article/top-twelve-myths-agile-development?page=0,2
http://agile.dzone.com/articles/7-agile-myths
http://at2011.agiletour.org/files/AgileInnovation - Agile Myths.pdf
http://at2011.agiletour.org/files/AgileInnovation - Agile Myths.pdf
http://at2011.agiletour.org/files/AgileInnovation - Agile Myths.pdf
http://at2011.agiletour.org/files/AgileInnovation - Agile Myths.pdf
http://www.agileinnovation.eu
http://www.versionone.com/pdf/AgileMyths_BetterSoftware.pdf
http://www.agilenutshell.com/agile_myths
http://www.cio.com/article/174650/What_an_Agile_Process_Looks_Like?page=1&taxonomyId=3040
http://www.versionone.com/pdf/AgileMyths_BetterSoftware.pdf
http://en.wikiquote.org/wiki/Special:BookSources/0160588510
http://www.agileconnection.com/article/top-twelve-myths-agile-development?page=0,2
http://www.versionone.com/pdf/AgileMyths_BetterSoftware.pdf
http://agilemanifesto.org/history.html
https://sites.google.com/site/unclebobconsultingllc/home/articles/the-scatology-of-agile-architecture
http://www.agilenutshell.com/agile_myths
http://www.jeckstein.com/conferences/agilityDays.pdf
http://darkagilemanifesto.org/dark-side-of-agile-janes-succi-splash-2012.pdf
http://darkagilemanifesto.org/dark-side-of-agile-janes-succi-splash-2012.pdf
http://blogs.gartner.com/nathan-wilson/the-trough-of-disillusionment/

© 2014 Intelliware Development Inc.

What You’ll Learn in this Presentation:

• The basics of user stories.

• How user stories fit into the overall Agile planning process.

• How to write a user story.

© 2014 Intelliware Development Inc.

A story card example

44

46

Why is it so Difficult to Determine Software Requirements?

• Requirements gathering is when informal ideas become formal

concepts:

o Converting a concept into something concrete is almost always more

difficult than it is initially believed to be.

o The concept of what the concrete version needs to look like changes

frequently.

© 2014 Intelliware Development Inc.

Usually more difficult than

thought to be…and usually

changes frequently
The winding road to software

requirements

47

Why are Requirements So Important?

• According to Fred Brooks (the author of The
Mythical Man Month):

• “The hardest single part of building a software
system is deciding precisely what to build. No
other part is as difficult…No other part of the work
so cripples the resulting system if done wrong.”1

• According to Barry Boehm (Software Engineering

Economics) and other software engineering

experts, around 75-80% of all errors found in

software projects can be traced back to the design

and requirements phases.2

© 2014 Intelliware Development Inc.

1 Brooks, Frederick P., 1987. “No Silver Bullet: Essence and Accidents of Software Engineering”, Computer, Volume 20, No. 4.
2 Boehm, W .Barry. “Software Engineering Economics”. Prentice Hall; 1 edition (Oct. 22 1981).

48

The Challenges with Written Requirements

• According to Mike Cohn, author of User Stories Applied:

• “Writing things down is no guarantee that customers will

get what they want; at best they’ll get what they wrote

down.”3

• From Lean Software Development by Mary & Tom

Poppendieck, the Seven Wastes of Software

Development:4
1. Partially Done Work

2. Extra Processes (paperwork)

3. Extra Features

4. Task Switching

5. Waiting

6. Motion

7. Defects

© 2014 Intelliware Development Inc.
3 Cohn, Michael W., 2004. “User Stories Applied for Agile Software Development”, (Addison-Wesley Professional Series, Boston, MA).
4 Poppendieck, Mary and Poppendieck, Tom, 2003. “Lean Software Development: An Agile Toolkit”, (Addison-Wesley Professional Series, Boston, MA).

49

What is a User Story?

There are numerous definitions for stories.

• A common definition:

o A short description of a function that an

end-user would want.

• From Kent Beck:

o “One thing the customer wants the system

to do…(it) should be testable.”5

• From Ron Jeffries:

o “Stories are promises for…the series of

conversations that will take place between

the customer and the programmers.”6

© 2014 Intelliware Development Inc.
5 Beck, Kent, 2000. “Extreme Programming: Embrace Change”, (Addison-Wesley, Boston, MA)
6Jeffries, Ron, Anderson, Ann and Hendrickson, Chet, 2001. “Extreme Programming Installed”, (Addison-Wesley, Boston, MA)

50

Why User Stories?

Stories have many advantages.

• Easy to understand

o Written in non-technical language that customers

/ product owners can relate to.

• Work at the right level

o Not too detailed, are easy to manipulate and

move around, like a deck of cards.

• Relatively easy to create

o Writing stories takes some skill, but experts can

define entire systems for planning purposes in a

matter of hours.

© 2014 Intelliware Development Inc.

51

 Story Types

© 2014 Intelliware Development Inc.

Epic

Feature

User

Story

• Represents multiple features or many stories.

• Can take months to build and works at the release level.

• What the end users tend to focus on.

• Smaller than epics, but bigger than stories.

• Can take weeks, possibly one or more Iterations to build.

• What customers / product owners tend to focus on.

• Are the smallest increment of value.

• Take days, perhaps a week or two at most to build.

• What development teams tend to focus on.

Primary focus of this

presentation.

52

Key Players: Customers & Developers

1. Customers / product owners

o The people who know how to do what the system is

going to be doing.

o They either are the end user or they are

representative of the eventual user of the system.

2. Programmers

o The people who will be building, testing, deploying,

documenting & training those who will use the

system.

Stories are key to fulfilling the requirements in the

Customer and Programmers Bills of Rights.

© 2014 Intelliware Development Inc.

Customer Bill of Rights

• You have the right to an overall plan

• You have the right to change your

mind, to substitute functionality, and to

change priorities

• You have the right to be informed of

schedule changes, in time to choose

how to reduce scope to restore the

original date

Programmer Bill of Rights

• You have the right to know what is

needed, with clear declarations of

priority

• You have the right to make and update

your own estimates

53

User Story Components

At minimum, a user story has:

1. A card to write the story on.

2. A name that the customers and

developers understand.

3. A description (should be limited to

one or two sentences).

4. Acceptance criteria to define when

the story will be considered

completed.

5. A size estimate for time

management.

© 2014 Intelliware Development Inc.

Pay by Credit Card

As an online customer, allow me to pay by credit card

of my choice so that I can complete my purchase.

Acceptance:

Test payments with VISA, Master Card & Amex.

Reject payments exceeding $1000

Size = 2

A typical story card.

54

User Story Components

© 2014 Intelliware Development Inc.

Story Name

Description

(no more than 2-3 sentences)

Story Notes

(optional)

Story Priority

(optional)
Story Size

Acceptance

(list of criteria to indicate when

the story will be closed)

Release, Module and ID Fields

(optional - help to identify the story)

Priority Size

2 1

Login

Description:
As an authorized user, provide a login page to gain access to the secure pages of the Web site.

Notes:

 Users to provide IDs and Passwords.

 A ‘Forgot your password?’ link will be needed.

Acceptance:
To be provided by the Customer.

.

ID

SMP-1-2

Client Logo

(optional)

55

Story Actions

Stories can be:

• Split

o A large story can be split into two or more smaller

ones of different sizes; useful for breaking up epics.

• Combined

o Two or more small stories can be combined into one.

• Added

o New stories can be added to an existing backlog.

• Deleted

o Existing stories can be deleted from a backlog.

© 2014 Intelliware Development Inc.

+
X

56

The 3 Cs of Stories

•Card

o A token to represent some customer functionality.

o Stories represent customer requirements rather than document

them.

o Using a card keeps the story short.

•Conversation

o Customers and developers discuss the details of the story at the

time it is to be developed, not before then.

•Confirmation

o The customer should provide acceptance tests for the story, and

then see them run to confirm that the story has been completed.

© 2014 Intelliware Development Inc.

57

User Roles and Description Formats

• Identifying user roles helps with writing stories.

• Standard story description template:
As a [role], provide [function] so that [business value].

• Some simple examples:

o As a customer, provide a button that I can use so that I can

connect directly with the call centre when my order gets stuck.

o As a call centre rep., review orders in progress online so that I can

help customers complete their orders.

o As a manager, access stats on incomplete online orders so that I

can make decisions on how to improve the ordering process.

© 2014 Intelliware Development Inc.

Call Centre Rep.

Manager

Customer

58

 Writing Stories – The INVEST Framework7

© 2014 Intelliware Development Inc.

•Testable – It must be possible for the development team to write tests for the

story.

•Small – Stories that are too big are not useful in planning.

•Estimatable – Stories should be understood well enough by customers and

should be small enough to be “estimatable”.

•Valuable – The feature should have business value to the customer.

•Negotiable – Stories should be written so that the details can be negotiated in

a conversation between the customer and the development team.

• Independent – Dependencies between stories should be avoided.

7Wake, Bill. “INVEST in Good Stories, and SMART Tasks”. Posted August 17, 2003 on XP123.

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

59

 User Stories vs. Use Cases

• A story can be considered similar to a lightweight use case.

o A story can represent a small piece of a use case.

• Use cases cut across many functions and may touch on many stories.

© 2014 Intelliware Development Inc. Functions

T
e
c
h
n
o
lo

g
ie

s

S
to

ry

Use case

60

 Examples of Common Story Mistakes

© 2014 Intelliware Development Inc.

Not testable!

Not

functional.

61

 Examples of Common Story Mistakes

© 2014 Intelliware Development Inc.

Too big…should

probably be split as

follows:

1. Pay by one credit

card (including

payment

infrastructure)

2. Pay by additional

credit cards

62

 Examples of Common Story Mistakes

© 2014 Intelliware Development Inc.

This is huge, with

many functions;

an epic!

Also, there’s

more than one

user type.

63

 Examples of Common Story Mistakes

© 2014 Intelliware Development Inc.

This is not

independent as

there is a

dependency on the

List Flights Story.

Should be split

along another

dimension.

64

For More Information

Mike Cohn’s site contains a good section on

user stories:
http://www.mountaingoatsoftware.com/agile/user-stories

The Agile Alliance site is also a good

resource:
http://guide.agilealliance.org/guide/user-stories.html

Intelliware’s Knowledge Centre contains

several resources on the basics of Agile:

http://www.intelliware.com/knowledge-centre

© 2014 Intelliware Development Inc.

http://www.mountaingoatsoftware.com/agile/user-stories
http://www.mountaingoatsoftware.com/agile/user-stories
http://www.mountaingoatsoftware.com/agile/user-stories
http://guide.agilealliance.org/guide/user-stories.html
http://guide.agilealliance.org/guide/user-stories.html
http://guide.agilealliance.org/guide/user-stories.html
http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre

© 2014 Intelliware Development Inc.

What You’ll Learn in this Presentation:

• How estimates are used on Agile projects.

• How to define estimates.

• The basics of planning poker to help estimate.

© 2014 Intelliware Development Inc.
66

67

Introduction – Agile Planning

• Planning occurs throughout the development cycle and

is spread across the entire team.

• “Work the plan, not work to the plan.”

• A user story is a short description of a function that an

end user would want.

• Stories serve as a form of currency between the

customers and the development team.

© 2014 Intelliware Development Inc.

68

The Agile Planning Process

• Estimates are needed to support ongoing planning in Agile projects.

• Estimates help to answer the following questions:

o How many stories can we fit into the release?

o How many stories will be completed in the next iteration?

o What are the impacts of adding, removing and changing stories?

© 2014 Intelliware Development Inc.

Features
Estimate

Size

Determine

Duration
Planning

69

What is an Estimate?

• An estimate is a measure of the relative size, in

terms of effort, of a story.

• Why focus on size?

o Estimate size to derive duration.

o Size can be estimated.

o Duration is hard to determine due to meetings,

non-work appointments and other distractions that

cannot be estimated.

© 2014 Intelliware Development Inc.

70

1. non-development project time

(e.g. standup meetings), and

2. non-project work time (e.g. internal non-

project meetings, medical appointments).

• Baseball analogy: the effort to complete a game

is 54 outs or 9 innings, but what’s the duration of

these events – and those in between?

© 2014 Intelliware Development Inc.

Effort vs. Duration

• Not separating effort from duration is a common estimating error.

• In reality, developers (and people in general) are good at estimating the

effort required to complete something but not the time needed.

• For software, development effort can be estimated but, to determine

duration, additional time needs to be factored in to account for:

71

Ideal Time vs. Real Time

• Ideal Time = effort

o Time required to complete something

with no interruptions.

o Represents effort.

o Can be estimated relatively accurately.

• Real Time = duration

o The actual time to complete something.

o Includes breaks, distractions, delays.

o Difficult to estimate – must be derived.

© 2014 Intelliware Development Inc.

72

The Value of Estimates

• Address the Law of Diminishing Returns

o Make the most efficient use of development

time.

• Benefits from the input of several people

o Estimates are shared amongst the team.

• Supports ongoing planning

o Facilitate planning discussions at the right

level.

• Easy to change

o Can be revised, split, etc.

© 2014 Intelliware Development Inc.

The application of the Law of

Diminishing Returns to estimating

73

 Estimate Values

• Estimates can be measured in terms of:

o Points.

o Ideal days.

o Any other unit of measurement that

makes sense to the team.

• Common estimating scales:

o Standard interval – 1, 2, 3, …

o Fibonacci series – 1, 2, 3, 5, 8, 13, 21, …

o Doubling interval – 1, 2, 4, 8, 16, …

© 2014 Intelliware Development Inc.

The Fibonacci Series

74

What is Velocity in Estimating?

• A measure of the rate of progress.

• Needed for iteration and release

planning.

• Usually measured in terms of points

or ideal days per iteration.

• Converts ideal time or estimates to

duration.

• Corrects for variability and errors in

estimation.

© 2014 Intelliware Development Inc.

A typical velocity tracking plot

75

How Is Velocity Determined?

Three Primary Methods:

1. Historical Values

o Use observed velocity from past iterations.

2. Test Iterations

o Run a test iteration and measure actual

velocity.

3. Forecast

o Compare available staff hours with story

task breakdown estimates.

© 2014 Intelliware Development Inc.

Velocity Chart

Another example of a velocity chart

76

Planning Poker

• Recognized as one of the best

ways for Agile teams to estimate

because it:

o encourages the entire development

team to participate;

o is easy, interactive, and fun; and

o facilitates quick consensus on

estimates.

© 2014 Intelliware Development Inc.

77

Planning Poker Procedure

1. Team meets around a table with cards.

2. Moderator reads out a story.

3. Moderator answers questions.

4. Estimators privately select a size card.

5. Estimators show their cards.

6. Any discrepancies are discussed, additional questions

are answered.

7. Estimators re-estimate by selecting a new size card

and revealing it.

8. Repeat.

© 2014 Intelliware Development Inc.

78

Planning Poker – Key Things to Remember

• The moderator can be anyone…product owner, scrum

master, analyst, etc.

• Keep to the left side of the effort/accuracy curve.

• Limit each round of discussion to no more than a few

minutes – a timer can help.

• Convergence is usually reached on the 2nd round.

• Absolute agreement is not required.

o 5, 3, 5, 8, 5 – this would be sufficient to arrive at 5 as

the estimate.

© 2014 Intelliware Development Inc.

79

For More Information

Mike Cohn’s site contains a good description

of Planning Poker:
http://www.mountaingoatsoftware.com/agile/planning-poker

The Crisp site is also a good source of

Planning Poker basics:
http://www.crisp.se/bocker-och-produkter/planning-poker

Intelliware’s Knowledge Centre contains

several resources on the basics of Agile:

http://www.intelliware.com/knowledge-centre

© 2014 Intelliware Development Inc.

http://www.mountaingoatsoftware.com/agile/planning-poker
http://www.mountaingoatsoftware.com/agile/planning-poker
http://www.mountaingoatsoftware.com/agile/planning-poker
http://www.crisp.se/bocker-och-produkter/planning-poker
http://www.crisp.se/bocker-och-produkter/planning-poker
http://www.crisp.se/bocker-och-produkter/planning-poker
http://www.crisp.se/bocker-och-produkter/planning-poker
http://www.crisp.se/bocker-och-produkter/planning-poker
http://www.crisp.se/bocker-och-produkter/planning-poker
http://www.crisp.se/bocker-och-produkter/planning-poker
http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre

© 2014 Intelliware Development Inc.

What You’ll Learn in this Presentation:

• The basics of release and iteration planning.

• The differences between a release and an iteration.

• The basics of task planning.

© 2014 Intelliware Development Inc.

80

Some Things to Remember About Planning…

• Agile planning is a continual process

o Development is iterative, and so planning has to

respond accordingly.

• Our planning motto: Work the plan, not work to the

plan

o In other words, “Plans are worthless, but planning is

everything.”1 - Dwight D. Eisenhower

o Planning enables Agile teams to stay focused on

business value.

© 2014 Intelliware Development Inc.
1 From a speech to the National Defense Executive Reserve Conference in Washington, D.C. (November 14, 1957) ; in Public Papers of the

Presidents of the United States, Dwight D. Eisenhower, 1957, National Archives and Records Service, Government Printing Office, p.

818 : ISBN 0160588510, 9780160588518.

82

http://en.wikiquote.org/wiki/Special:BookSources/0160588510

83

Agile Planning Horizons

• Release:

o 1 to 3 month horizon with defined deliverables, multiple

iterations, and focus on delivery to the end user.

• Iteration:

o 1 to 3 week planning period with multiple user stories,

greater precision than a release, and focus on delivery

to the customer / product owner.

• Task planning:

o 1 hour team meeting to break a story into more

manageable tasks, assign tasks to developers, and

focus on creating a plan to complete a user story.

© 2014 Intelliware Development Inc.

The 3 levels of planning (from top to bottom):

release, iteration, and task planning for a

user story

Release

Iteration

Story

Tasks

84

Who’s Involved In Release Planning?

• Customers / Product Owners:

o define stories;

o set priorities; and

o put stories into iterations.

• Developers:

o estimate stories;

o point out significant technical risks; and

o establish velocity, a measure of team
development capacity.

© 2014 Intelliware Development Inc.

85

Defining a Release Plan

1. Establish iteration lengths
o Iterations are generally 1 to 3 weeks long.
o Developers decide what will be in the iteration in

collaboration with the customer / product owner.
o Smaller projects tend to have shorter iterations.
o Size is important as release dates are usually based on

external constraints.

2. Determine the velocity
o Estimate of how many estimating units can be

completed per iteration.
o Developer responsibility.
o Unit of measurement used does not matter – be it

points, ideal days, or something else.

3. Organize stories into iterations
o Based on business and technical priorities.

© 2014 Intelliware Development Inc.

The process of deciding what goes

into a release

86

Release Plan Variations

A release plan can (and will) be modified in numerous ways:

1. Change priority of stories

o Stories can be moved from one iteration to the next.

o Decided by the customer / product owner and
happens often.

2. Add new stories

o Need to determine priority and which iteration the story
will fit into.

o A lower priority story may need to be bumped to make
room for new stories of higher priority.

© 2014 Intelliware Development Inc.

87

Release Plan Variations (continued)

A release plan can (and will) be modified in numerous ways:

3. Delete stories

o Has the opposite effect of adding new stories; the gap
will need to be filled with other stories previously
excluded from the iteration.

4. Rebuild

o It’s not unusual at the end of an iteration to review the
remaining stories and completely rebuild the plan for the
remaining iterations.

o Remember…work the plan, don’t work to the plan.

© 2014 Intelliware Development Inc.

88

Common Release Plan Problems & Solutions

• Story too large to estimate

o The story should be split into smaller parts.

• Story spans iterations due to external dependencies

o Best to have the developers split the story into two parts:

1. Finish what can be completed now.

2. Create second story representing what is not yet done.

• Story ‘blows up’ due to scope or technical issues

o The story needs to be halted and re-scoped or re-planned.

• Release date slides

o Development team is responsible for reporting this ASAP.

o Developers and customer / product owner need to work
together to de-scope and re-plan.

 © 2014 Intelliware Development Inc.

89

Example of a Release Plan

© 2014 Intelliware Development Inc.

Iteration 1 Iteration 2

Release Iteration Stories Size
Alpha 1 Home Page 1

Login 1

Display Account Summary List 2

Display Account Details 1

List Transaction Summary for an Account 1

Add New Transaction 2

Logout 1

TOTAL 9
2 Add New Account 2

Deactivate and Remove Existing Account 1

Modify Account Information 1

Delete a Transaction 1

Modify Transaction or Move to Different

Account 2

TOTAL 7

• Here’s an example of a

 release that consists of 2

 iterations with 12 stories.

• The release plan is presented 2

different ways.

90

Iteration Planning

Characteristics of iterations to consider when planning:

• Generally 1 to 3 weeks long.

• More developer-focused than they are customer /

product-owner focused.

• More precise than releases in terms of their planning

focus.

• Have a specified length of time based on fixed dates.

• Start by holding an iteration planning meeting.

© 2014 Intelliware Development Inc.

91

Iteration Planning Meeting

Objectives:

• Acknowledge accomplishments of last iteration.

• Determine the level of overall progress.

• Review problems and issues.

• Establish objectives for next iteration.

• Task planning for target stories (optional).

© 2014 Intelliware Development Inc.

92

Estimating Velocity

• Optimizing velocity is fraught with peril – regardless of the

team size, the difficulty level of the work, or the skill level of the

team.

o Predicting the future is unreliable – don’t do it.

o Velocity is about the team, not individuals.

o Velocity is a measure of capacity, not performance.

• Using velocity to compare teams is problematic at best

o No two projects, domains or teams are the same.

• Base velocity on “yesterday’s weather”

o Yesterday’s weather: the velocity for the upcoming iteration is
assumed to be the same as that of the previous iteration.

© 2014 Intelliware Development Inc.

93

Timing of Task Planning

• Two Options:

1. Tasking at the iteration-level

o Scrum recommends task planning as part of iteration
planning, i.e. at the start of an iteration.

2. Tasking at the story-level

o This can take place as part of iteration planning or
separately.

o At Intelliware, we prefer to task stories when we open
them.

© 2014 Intelliware Development Inc.

94

Task Planning Meeting

• Developer-focused meeting to deconstruct a story into a

series of finer-grained tasks

o Customers / product owners can attend, but the meeting
content is likely too detailed to be of interest to them.

• Tasks are recorded in a way that makes them visible

o Whiteboard or chart paper are typical tools.

• Tasking makes the story easier to develop

o Forces the development team to think about implementation
issues.

o Tasks can be worked on by multiple pairs or individuals
simultaneously.

© 2014 Intelliware Development Inc.

95

Example Task Board

© 2014 Intelliware Development Inc.

Who Start End Est. SPS-11: Show Account Balance MH 8.0
LDL 3 4 0.5 Update project DB schema to add new Acc Bal field

MH/SH 3 1.0 New batch process to update balances to new Acc Bal field

GC/BO 4 0.5 DAO

MH 3 0.25 Add new field to UI

0.75 Handle negative balances

0.5 Handle $0.00 balances for new clients

0.5 Initial customer demo

1.0 Update integration tests

0.5 DAT

1.0 Check UI changes in all browsers

2.0 Update Stored Procedures on DB server for new Acc Bal field

Title bar with story

name, ID, tasked

estimate and story

lead initials

Removed task is

crossed out, not

erased

New task identified

after tasking meeting

is added to the

bottom of the list

When a pair of

developers

works on a

task both

initials are

added

Tasks in

progress are

marked with

lead developer

initials and

start date

Pause symbol

indicates a task on

hold

Completed tasks are

identified in some

way



96

A Task List

• Task list: the visible list keeps the team

focused on tasks.

• Task meeting process: the task name

and size are added during the tasking

meeting – the who and when are added

later.

• Designed for pull mode work

assignment

o Pulling tasks encourages the team to
work together.

o Sometimes tasks are assigned to
developers or pairs for specific reasons,
but this occurs in the context of the team.

© 2014 Intelliware Development Inc.

An example task board for a story in progress

97

Task Attributes

• Tasks should be quantifiable (in terms of time needed to complete)

o Tasks are very specific and should have estimates in days, part-days or
even hours.

o Task estimating occurs in the task planning meeting.

• Tasks should be small

o No more than a day or two per task.

• Tasks can be technical

o Refactorings, system upgrades, etc. are unavoidable.

© 2014 Intelliware Development Inc.

98

Task Tracking at Task Planning

• Task size estimates provide an early indication of potential issues with

the story.

• Example:

o Story size estimate: 5 ideal days.

o Sum of task estimates: 8 ideal days.

o Over-estimate: 3 ideal days or 160%.

• Outcome:

o Team should discuss why task estimate > story estimate.

o Team should consider ways to develop the story within the original
estimate, or split it (and report back to customer / product owner).

• Tracking during development also provides an early indication of

possible issues – don’t leave things festering!

 © 2014 Intelliware Development Inc.

99

For More Information

Mike Cohn’s book, “User Stories

Applied” is the definitive reference

on release and iteration planning.

Intelliware’s Knowledge Centre

contains several resources on the

basics of Agile (see next slide for

titles in our Agile series):

http://www.intelliware.com/knowledge-centre

© 2014 Intelliware Development Inc.

http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre

© 2014 Intelliware Development Inc.

Agile Room
(Team) Dynamics

Agile Room (Team) Dynamics:

Getting Teams Performant (and Happy)

What You’ll Learn in this Presentation:

• The signs to look for in a dynamic Agile team room.

• How to get a team performant (and happy).

© 2014 Intelliware Development Inc.

Why (Room) Team Dynamics are Important

• Agile focus on people strongly related to teams.

• In a team environment, team dynamics translates directly

into productivity.

o A happy team will inherently be more productive. Agile is no

exception.

o Conversely, an unhappy team can be extremely non-functional.

• When a team isn’t working well, everyone suffers.

© 2014 Intelliware Development Inc.

103

The 11 Signs of Good Room Dynamics

1. Deliverables are EVERYONE’s responsibility.

2. Team Lead and Architect roles may be designated, but delivery is

 EVERYONE’s responsibility.

3. Everyone is engaged & respected.

4. Healthy debate and conflict happens – and compromise.

5. Whiteboard sessions.

6. Members help each other.

7. Team members have confidence in each others’ abilities.

8. No egos.

9. Buzz in the room.

10. Celebrations of small successes.

11. Music.

© 2014 Intelliware Development Inc.

104

1. Deliverables are EVERYONE’s Responsibility

• The team must be working as a team towards a common goal.
o Everyone has the same understanding of the overall project objective.
o No silos.

• Certain team members may be focused on specific stories or
tasks, but they are not solely responsible for them.

© 2014 Intelliware Development Inc.

o Everyone on the team is aware of what
everyone else is working on and are
willing to assist when needed, even
when not asked.

o Refusing to help others is not an option.

105

2. Team Lead and Architect Roles may be

Designated, but Delivery is EVERYONE’s

Responsibility

• Leadership roles, such as Architect or Team Lead,

are necessary and important.

o These roles involve responsibilities that require certain
skills and don’t make sense for the whole team to do.

o They do not denote seniority over other team members.

• The whole team works together to keep the project

on track.

© 2014 Intelliware Development Inc.

o There is a collective focus in the room on the overall delivery
objective – success is a team objective; it is not the
responsibility of one or two individuals.

106

3. Everyone is Engaged & Respected

• In a dynamic Agile room, everyone:
o is an equal,
o listens,
o is heard, and
o participates.

• There is no:
o avoiding the team or
o disrespectful behaviour.

• There are no heroes.

© 2014 Intelliware Development Inc.

107

4. Healthy Debate and Conflict

• Debate and conflict are normal.
o Debate, arguments, and conflicts happen

often in the room.
o Facilitated by the fact that everyone feels

free to speak up and that their opinions
will be respected.

o The focus is on the good of the project
and maximizing value to the customer.

o Personal attacks are not tolerated in any
way whatsoever.

© 2014 Intelliware Development Inc.

108

5. Whiteboard Sessions

• Whiteboards are an important feature of

the room used to communicate design

diagrams, task lists, etc.

• Whiteboards are used as a common focal

point for design discussions, tasking

meetings, etc.
o Everyone is allowed to participate in these

discussions, at their own discretion.
o Closely related to healthy debate.

• No whiteboard in the room is left blank!

© 2014 Intelliware Development Inc.

109

6. Members Help Each Other

© 2014 Intelliware Development Inc.

• A stuck developer is an unproductive

developer.
o Nobody is afraid to ask for help from other team

members.
o Assistance is offered without question.

• Collective sense in the room that helping each

other is critical. Works in two ways:
o If we help each other, the team will benefit.
o I may need you to help me one day.

• Standup is a common mechanism to point out

difficulties and ask for help.

110

7. Team Members Have Confidence in each Others’ Abilities

• Everyone on the team is aware of and respects their own and other team

member’s abilities.
o Varying skill sets and levels of proficiency are known and appreciated – not

everyone is a rocket scientist.

© 2014 Intelliware Development Inc.

o Team members don’t sign up for tasks that they’re not

capable of completing.

o Likewise, when team members take on a task, this

decision is respected by other team members.

• The team accepts that delivery relies on a team

with diversified skills and levels of experience.

111

8. No Egos

• No cowboy programmers.

• No ‘last minute’ heroes.

• Yes Servant Leaders.

© 2014 Intelliware Development Inc.

112

9. Buzz In The Room

• The project room immediately appears to be a

hive of activity.

o Everyone is busy and engaged.

o The team is located around a central table.
 No outliers.

o There’s lots of talking:

 Pairs working together.

 Ad hoc discussions.

 Whiteboard sessions.

o Whiteboards are covered with stuff.

o It’s not exactly neat and clean.

© 2014 Intelliware Development Inc.

113

10. Celebrations of Small Successes

• In Agile, a successful project is not

one event but instead is the

cumulative effect of a series of small

successes.

• Agile teams recognize this and

celebrate small successes often by:
o Showing appreciation for other team

member’s efforts.

© 2014 Intelliware Development Inc.

o Going out to lunch together.

o Bringing food or drinks into the project

 room at the end of the day.

114

11. Music

• Music can often be heard in an Agile team

room because…
o Developers enjoy listening to music while they work.

o The atmosphere is relaxed.

o Everyone gets a chance to play what they like.

o Nobody criticizes other’s musical preferences

(within reason ).

o It’s not too loud.

© 2014 Intelliware Development Inc.

• No headphones!
o This is a sign of somebody who’s not fully

engaged with the team.

115

How to Maintain Healthy Project Room Dynamics

These are the things that Agile Teams implement to maintain healthy

project room dynamics:

1. Group negotiation of team rules.

2. Team lunches.

3. Storming as a given.

4. Pairing negotiation.

5. Always listen in.

6. Conflict amongst team members.

7. Decisions.

8. Engage the larger development team.

9. Incorporating new team members.

10. Humour & Food.

© 2014 Intelliware Development Inc.

116

1. Group Negotiation of Team Rules Guidelines

• Collective confirmation regarding:
o Stand-up.

o Story writing structure on the board.

o Scrum board.

o Bug tracking and wiki usage (e.g. Jira & Confluence).

o Retrospectives.

• Guidelines can always be changed as the team

settles in. Usually done as a result of end-of-sprint

retrospectives.

• First order of business: Team Lunch !

© 2014 Intelliware Development Inc.

117

2. Team Lunches

• Scheduled in calendar in a repeating cycle

(~ 3-4 weeks).
o 1st team lunch.

o Team building activities to break the ice.

• Initiated by any member of the team.

Important that whole team attends!!!!!

• Takes about 3 lunches for team to warm-up

to each other.

• Discuss 5 Stages of Team Development 

Next Slides.

© 2014 Intelliware Development Inc.

118

• Forming
o Little agreement, lack of purpose.

• Storming
o Conflict, power struggles, increased clarity

of purpose.

• Norming
o Agreement, clear roles & responsibilities.

• Performing
o Clear vision and purpose; focused on

common goal.

• Adjourning
o Project/task complete; hopefully with good

feelings about outcome.

© 2014 Intelliware Development Inc.

Tuckman, Bruce, 1965. "Developmental sequence in small

groups". Psychological Bulletin ,63 (6): 384–99.

3. Storming as a Given…The 5 Stages of Team Development

http://findarticles.com/p/articles/mi_qa3954/is_200104/ai_n8943663
http://findarticles.com/p/articles/mi_qa3954/is_200104/ai_n8943663

119

What Happens if the Team

Changes

• Why might the team change?
o New team formed for new

project.

o Maternity leave.

o Somebody leaves the company.

o New hire added to supplement

the team.

o Somebody is added that has a

specific skill set.

o Team members moved between

teams to cross-pollinate skills

and practices.

© 2014 Intelliware Development Inc.

Tuckman, Bruce, 1965. "Developmental sequence in small

groups". Psychological Bulletin ,63 (6): 384–99.

http://findarticles.com/p/articles/mi_qa3954/is_200104/ai_n8943663
http://findarticles.com/p/articles/mi_qa3954/is_200104/ai_n8943663

120

You Are Expected to Storm

• Must be verbalized by the Team Lead, Project

Manager or team coach to ensure team has

common expectations.

• Introduce concept at first team lunch.

• Allows team members to disagree passionately

(and even get annoyed with each other) and know

that it is an expected part of growing pains.

• Early retrospectives review where we think we are on the 5 steps of team

formation.

• The whole team storms, some are more noticeable than others.

© 2014 Intelliware Development Inc.

121

4. Pairing Negotiation

• Discuss briefly how you like to pair.
o Want pair to point out typos or mistakes immediately?

o Drive for several hours and switch, or ping pong?

• What are habits you have (or not aware of that have

been pointed out to you in the past)?

• What are your normal work hours?

• Give pair permission to speak-up or stop you if you are

doing something they don’t like.

• This is especially important at the beginning of project

for all “new pairs.”
o Additional reading: Pair Programming Illuminated by

Williams & Kessler.

© 2014 Intelliware Development Inc.

122

5. Always Listen In

• Pay attention to discussions going on in the room!
o It takes a village!

o At the end of the day, it’s EVERYONE’S fault if something goes wrong (especially

true if a new or junior member caused it).

• Tune in and out of conversations around you.
o Saves time when you have to switch pairs or a task.

• Do as much pairing as possible and practical.
o Ideally identify tasks that should be paired on during tasking.

• Verbally communicate code changes that may impact

others as soon as it’s pushed.

• Headphones?  Seriously??

© 2014 Intelliware Development Inc.

123

• Not easy initially, but team building helps.

• Kindergarten rules.

• Always give an opt-out option and if not

possible - the lesser of two evils.

• Include everyone in their own way.

• Don’t allow others to be interrupted by

stronger personalities in a discussion.

• Pay attention to non-verbal cues & ask

follow-up questions.

© 2014 Intelliware Development Inc.

6. Conflict Amongst Team Members - Know the Personality Types

124

Myers Briggs Personality Test

• Based on the theory of psychological

types.
o Rational (judging) – thinking &

feeling.

o Irrational (perceiving) – sensation &

intuition.

• Knowing your personality type and

the types on your team will help

you better interact with them.

• Online Myers Briggs Test:

www.humanmetrics.com/cgi-

win/jtypes2.asp

© 2014 Intelliware Development Inc.

http://www.humanmetrics.com/cgi-win/jtypes2.asp
http://www.humanmetrics.com/cgi-win/jtypes2.asp
http://www.humanmetrics.com/cgi-win/jtypes2.asp

125

Conflict Amongst Team Members - Storming

• Let people storm, but monitor that they move beyond that stage.
o If two people are storming, let them work it out.

• Don’t enable avoidance, just to be “nice”.
o Don’t allow team members to avoid each other via

not pairing when they could or should be.

• Pay attention to non-verbal cues.
o Folded arms.

o Raised eyebrows.

o High pitched voice.

• Be aware of the differences among:
o Difference of technical opinion vs.

o Personality conflict vs.

o Personal styles.

© 2014 Intelliware Development Inc.

126

Conflict Amongst Team Members - Intervening

• Only step in when it becomes unhealthy/uncomfortable for the team and

absolutely necessary.
o If you must intervene, discuss with them separately & privately and provide and objective

point of view, then arrange a mediation if absolutely necessary.

• Anyone on the team can step in.

• Come to consensus and then be consistent.

Don’t agree to disagree and then implement

multiple flavours of the same solution.

© 2014 Intelliware Development Inc.

127

7. Decisions

• The team is responsible for delivery, but technical

decisions are not the responsibility of the whole team…
o Some members of the team, such as PMs, BAs and QAs, do

not have the skills, experience and background to be involved

in these decisions.

o Larger final decisions that have impact on overall architecture

are usually arrived at as a result of discussion of one or two

senior team members. These decisions are then

communicated to the rest of the team to seek consensus.

o Day-to-day technical decisions are made by the team

consistent with the shared technical direction.

o If options impact scope, budget or future feature options, PM

and/or BA present to Client for the final call if necessary.

© 2014 Intelliware Development Inc.

128

8. Engage the Larger Development Team

• It takes the development village.

• Interact with other co-workers beyond your team

during your project’s lifetime.

• Don’t spin wheels too long.
o Ask around if stuck. Your company’s knowledge isn’t

limited to your project room.

o Know and engage your options before spending 2 to 3

days on a problem .

o Document and share answer!

o By asking around, people you talked to will remember

next time they encounter a similar problem.

© 2014 Intelliware Development Inc.

129

9. Incorporating New Team Members - Make New Members Feel Welcome

• When the team is disrupted, storming is expected again in addition to the

other 4 stages.
o Good time for team lunch.

• New team members are responsible for asking

questions partly to learn and partly to challenge

the status-quo. They are by definition “fresh eyes”.
o This is an opportunity to learn where team’s process and

documentation is lacking.

• Existing team members should be confident in the

existing decisions that were made by the team.

© 2014 Intelliware Development Inc.

130

New Team Member – Make Yourself Fit In

• Accept that you represent a disrupting force.
o The team will storm. Don’t take it personally.

• Don’t be afraid to ask questions.
o But respect history.

o Previous decisions may seem insane, but they were

probably made for reasons that made perfect

sense at the time.

• Go out of your way to fit in with your

new team mates.
o It’s okay to rock the boat…but don’t tip it over!

© 2014 Intelliware Development Inc.

131

How to Make a Team Happy

• Humour & Food

• Food & Humour

• Humour & Food

• Food & Humour

• Did I mention Humour?........

What about Food?

© 2014 Intelliware Development Inc.

132

For More Information

• Intelliware’s Knowledge Centre contains

several resources on the basics of Agile

(see next slide for titles in our Agile series):
http://www.intelliware.com/knowledge-centre

• Further reading that we recommend:
o The Human Side of Agile by Gil Broza.

o Peopleware by Tom DeMarco and Timothy Lister.

© 2014 Intelliware Development Inc.

http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre
http://www.intelliware.com/knowledge-centre

133 © 2014 Intelliware Development Inc.

About Intelliware Development Inc.

Intelliware is a custom software, mobile solutions and product development

company headquartered in Toronto, Canada. Intelliware is a leader in Agile

software development practices which ensure the delivery of timely high quality

solutions for clients. Intelliware is engaged as a technical partner by a wide

range of national and global organizations in sectors that span Financial

Services, Healthcare, ICT, Retail, Manufacturing and Government.

/company/intelliware-development-inc-

/intelliware.inc

/intelliware_inc

/GooglePlusIntelliware

 www.intelliware.com

http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
https://www.facebook.com/intelliware.inc
https://www.facebook.com/intelliware.inc
https://www.facebook.com/intelliware.inc
https://twitter.com/intelliware_inc
https://twitter.com/intelliware_inc
https://plus.google.com/+Intelliware/posts
http://www.intelliware.com/
http://www.intelliware.com/
http://www.intelliware.com/
http://www.intelliware.com/
http://www.intelliware.com/
http://www.intelliware.com/
https://www.linkedin.com/company/intelliware-development-inc-
https://twitter.com/Intelliware_Inc
https://www.facebook.com/intelliware.inc
https://plus.google.com/+Intelliware
http://www.intelliware.com/

