
Agile Testing
BC Holmes

@bcholmesdotorg
© 2015 Intelliware Development Inc.

What you’ll learn in this presentation:

• Why do we use Agile testing?

• What Agile testing isn’t

• What Agile testing is: unit testing and test-driven development (TDD)

• High-level properties of good tests

• Testing in different languages

• Test suites and code coverage

• Using mock objects to help isolate units

• Beyond unit testing

© 2015 Intelliware Development Inc.

Design

• A test usually provides a concrete usage scenario that helps a developer think

about the following when writing code:

• What is the code expected to do?

• How will the code be set up and executed?

• What other pieces of code are needed as collaborators, and how will the code interact

with them?

• Especially good at helping to write code that is loosely coupled.

3 © 2015 Intelliware Development Inc.

Why do we use Agile testing?

Why do we use Agile testing?

Focus/Rhythm

• Unit tests provide an easy way for a developer to focus

on a particular coding task.

• Clear and fast feedback if the code is working or not.

• Always clear what to do next:

• Either fix a failing test or write a new test as a prelude to

adding functionality.

4 © 2015 Intelliware Development Inc.

What Agile testing isn’t

Agile Testing is not a “phase”.
• In traditional methodologies, testing is a phase of the project that happens after coding.

• In Agile methodologies, coding, refactoring and testing are tightly inter-related tasks and

can’t be separated.

A testing “phase” that’s months, weeks or even days in the future provides

very slow feedback to developers.
• Faster feedback gets failure information to developers while the details of the code

implementation is still fresh in their minds.

5 © 2015 Intelliware Development Inc.

What Agile testing isn’t (continued)

Agile testing is not a replacement for quality assurance (QA) testing.
• Agile testing is a practice to help developers create better code.

• Agile testing is intended to improve the quality (design, defects, etc.) of the final code

deliverables.

• That might mean that you have a lower need for QA, but not necessarily.

6

It’s noteworthy that Lisa Crispen’s book, Agile Testing,

is principally about the role of dedicated QA-style

testers on Agile projects, rather than the testing

practices of Agile developers.

© 2015 Intelliware Development Inc.

What Agile testing is:

unit testing and test-driven development

© 2015 Intelliware Development Inc.

Test-driven development (TDD)

TDD is one of the earliest forms of Agile testing, and the most

commonly implemented types of Agile testing. It’s a style of

programming in which three activities are tightly interwoven:

coding, testing (in the form of writing unit tests) and design (in

the form of refactoring).
• Write a "single" unit test describing an aspect of the program.

• Run the test, which should fail because the program lacks that feature.

• Write "just enough" code, the simplest possible, to make the test pass.

• "Refactor" the code until it conforms to the simplicity criteria.

• Repeat, "accumulating" unit tests over time.

8

Source: Agile Alliance

© 2015 Intelliware Development Inc.

Origins

9 © 2015 Intelliware Development Inc.

What is a unit test?

“In computer programming, unit testing is a software testing

method by which individual units of source code, sets of one or

more computer program modules together with associated

control data, usage procedures, and operating procedures are

tested to determine if they are fit for use. Intuitively, one can

view a unit as the smallest testable part of an application.

[…] In object-oriented programming, a unit is often an entire

interface, such as a class, but could be an individual method.

Unit tests are short code fragments created by

programmers… during the development process.”

10

Source: Wikipedia

© 2015 Intelliware Development Inc.

The TDD process

11

Commit code
Create a unit

test

Execute the

Test

Fix the code

so that the

test runs

Execute the

Test

Refactor the

code

Run all tests

Automated

build (includes

running tests)

© 2015 Intelliware Development Inc.

Creating a simple unit test in Java

• Unit tests are most

commonly created using the

JUnit framework.

• Imagine this scenario: we’re

writing code to calculate

mortgage payments.

12 © 2015 Intelliware Development Inc.

Create code that tests a specific expectation

13 © 2015 Intelliware Development Inc.

Run the unit test

• In this example, we’re using Eclipse’s

built-in JUnit test support to run the unit

test.

• The red bar indicates that our test

doesn’t yet pass successfully.

• Note how the test name appears to

clarify which test has failed.
• The name gives an indication of the expected

behaviour.

14 © 2015 Intelliware Development Inc.

Fix code and rerun

• The developer should write enough

code to make the test pass.

• The green bar indicates that all the

expected behaviour is correctly

implemented.

15 © 2015 Intelliware Development Inc.

Rules about tests

• Often, once the tests are green, the developer’s next step is to

refactor code.
• Refactoring involves improving the design of existing code.

• Make it more readable, increase the efficiency, or remove duplication.

• The tests help to ensure that the developer hasn’t broken any functionality during

the refactoring.

• Run all tests before committing or pushing code in to the source

code repository.
• If there are any broken tests, you should not commit.

• Automated build processes should run all of the tests as an

indication of the validity of the build artifacts.

16 © 2015 Intelliware Development Inc.

Some high-level properties of good tests

© 2015 Intelliware Development Inc.

Representative: Of events that are

likely to be encountered by the user.

(Not necessarily “commonly”, but

likely). Hacking attempts, for

example, might be likely, but not

common.

Non-redundant: The test shouldn’t

reproduce the work of another test.

Motivating: Your client will want to

fix the problem exposed by this test.

Properties of good tests

Power: A test should reveal

problems when they exist.

Valid: When the test states that

there’s a problem, it is a genuine

problem.

Value: Tests should reveal problems

that the client cares about.

Credible: The test should be trusted

to actually test the things that people

expect it to test.

18

Source: Cem Kaner

© 2015 Intelliware Development Inc.

Coverage: The test exercises a part

of the code that isn’t already handled

by another test.

Easy to evaluate: It should be

relatively easy to determine whether

the test has passed or failed.

Insightful: A good test should reveal

things about our assumptions.

Properties of good tests (continued)

Performable: Designing a test that

can’t actually be performed is

useless.

Maintainable: If the end product

changes, it’s important to be able to

update the tests.

Repeatable: It should be easy and

inexpensive to execute the test again

and/or reuse it as appropriate.

19

Source: Cem Kaner

© 2015 Intelliware Development Inc.

Cost: the cost to

create/execute/maintain the

test should compare favourably

to the value.

Opportunity Cost: The test

obviates the need to perform

some other work.

Supports troubleshooting: If the

test fails, it should help the

programmer identify the problem.

Appropriately complex: No more

complex than necessary.

Accountable: Can you explain why

the test exists, and can you

demonstrate that it was executed?

20

Source: Cem Kaner

© 2015 Intelliware Development Inc.

Properties of good tests (continued)

Testing in different languages

© 2015 Intelliware Development Inc.

Common unit test frameworks

Java
• JUnit, TestNG.

.Net
• Microsoft Unit Testing Framework and NUnit.

JavaScript
• Mocha, Jasmine, Unit.js, Nodeunit, QUnit, JSUnit, and

many others.

iOS / Objective-C
• XCUnit (successor to OCUnit).

Python
• Nose, unittest (a.k.a. PyUnit).

22 © 2015 Intelliware Development Inc.

Unit testing with JavaScript and Mocha.js

Slightly different syntax from JUnit, but most concepts are comparable.

23 © 2015 Intelliware Development Inc.

Executing Mocha.js on the command line

Most JavaScript unit test frameworks are command-line-based.

24 © 2015 Intelliware Development Inc.

Unit testing with C# and Microsoft’s unit testing tools

Again, slightly different

syntax, but same basic

concepts.

25 © 2015 Intelliware Development Inc.

Visual Studio’s built-in test support

26 © 2015 Intelliware Development Inc.

Testing with Objective-C and XCUnit

27 © 2015 Intelliware Development Inc.

XCode’s built-in support for XCUnit

28 © 2015 Intelliware Development Inc.

Successful execution

29 © 2015 Intelliware Development Inc.

Key insights

Unit testing in a variety of languages (and test frameworks)

is largely the same.
• Test a specific function and give it a descriptive name.

• Set up some necessary classes and/or data.

• Invoke the function/method under test.

• Check/assert that calculated values match expectations.

Most test runner tools use red and green indicators to tell

developers the current state of the tests.

30 © 2015 Intelliware Development Inc.

Test suites and code coverage

© 2015 Intelliware Development Inc.

Test suites

Over time, as more and more tests are created, a sizeable amount of the

application is backed by unit tests that are executed many times a day to

ensure that previously-created functionality still works.
• Hundreds or even thousands of unit tests are not uncommon for a single application.

As more and more tests are added, the amount of time it takes to execute

the tests increases.
• If that amount of time is too long, developers will start becoming discouraged from running

the tests regularly.

• A few seconds is awesome.

• Less than 30 seconds is still pretty good.

• A few minutes isn’t terrible.

• More than that is likely to be irritating.

32 © 2015 Intelliware Development Inc.

Code coverage

Some languages/environments have tools that can calculate the amount of

your application’s code that gets executed during the running of the unit test

suite.
• These tools are called “code coverage” or “test coverage” tools.

High coverage usually indicates that the application is well-tested, and that

usually results in developer confidence that they can change the application

and not break the existing functions.
• How high is high enough? There are a lot of factors and not all projects are the same, but

75% or 80% coverage is often used as a starting goal.

33 © 2015 Intelliware Development Inc.

Some stuff is hard to test

Visual output
• Does a web page look attractive? Is an animation jerky or glitchy? Is one component of a

web page covering or obscuring another component?

• Graphical output — especially image-based.

• Example: a class that outputs a bar chart as a PNG image.

Code that’s date/time-driven or based on timers
• But if you parameterize the date/time information, you can often mitigate the difficulty.

Legacy code
• The best time to start unit testing code is at the beginning of a project.

• Legacy code, especially tightly-coupled stuff, is harder to make testable.

34 © 2015 Intelliware Development Inc.

Using mock objects to help isolate units

© 2015 Intelliware Development Inc.

Mock objects: dealing with collaborators

“In object-oriented programming, mock

objects are simulated objects that mimic

the behaviour of real objects in controlled

ways. A programmer typically creates a mock

object to test the behaviour of some other

object, in much the same way that a car

designer uses a crash test dummy to

simulate the dynamic behaviour of a human

in vehicle impacts.”

36

Source: Wikipedia

© 2015 Intelliware Development Inc.

Tools for working with mock objects

Usually involves a mock framework

• Java

• Mockito, Jmock

• JavaScript

• Sinon.js

• Objective-C

• OCMock

37 © 2015 Intelliware Development Inc.

Example

We want to test functionality related to

renewing a mortgage.
• Renewing a mortgage should be based on same

payment type, but current interest rate.

Mortgage collaborates with a class that

provides the current interest rates.
• But we’re currently testing the renew functionality, not

the providing of interest rates.

Let’s try an example using Java and Mockito.

38 © 2015 Intelliware Development Inc.

39

Need a special

test runner

© 2015 Intelliware Development Inc.

40 © 2015 Intelliware Development Inc.

Additional thoughts

Mock object frameworks provide a powerful way to ensure

that you’re testing only a single unit at a time.
• Helps isolate an individual unit.

If the configuration of your mock object starts to get

complex or messy, that’s an indication that your class is too

tightly intertwined with the mock object’s class.
• Remember: loosely-coupled classes are easier to test, and usually a

better design choice.

41 © 2015 Intelliware Development Inc.

Defining your units

A “unit” is often a class or small collection of related classes.
• Anything not contained in that “unit” is a dependency or collaborator.

• We usually create mock objects to take the place of the dependency/collaborator when we

build the unit test.

Consider special case: a class that reads data from a database.
• In Java, such classes are often referred to as “Data Access Objects” or DAOs.

• Key question: does the “unit” that you’re testing include the database?

• Or should the database be considered a dependency/collaborator?

42 © 2015 Intelliware Development Inc.

The case for “no”
• Unit tests that connect to the

database are often slower than

most other unit tests.

• Both because of set up and

because of I/O.

• You need to consider the

contents of the database: does

your test expect certain records?

How do they get there? What if

those contents are changed?

Managing the initial state or

“home state” of the database is a

non-trivial exercise.

My gut is telling me “maybe”

The case for “yes”
• It’s often hard to mock out an

entire database API.

• Including the database allows

you to test more: object-

relational mapping

configuration, query

correctness, etc.

• If you use database features

such as triggers or stored

procedures, this might be the

only way you can test those.

43 © 2015 Intelliware Development Inc.

Database tests

Don’t get hung up on the name.
• Whether or not they’re “unit” tests, it’s often fruitful to include

tests that touch the real database.

Dealing with “Home State” is often worth the initial

investment.
• Home state is a version of the database (or other resource)

that contains the data that the tests expect.

44 © 2015 Intelliware Development Inc.

Approaches to home state

Restore the database prior to running tests.
• Always brings the data back to home state, but might take time.

Have a separate database specifically for unit tests to use.
• But need to apply necessary table definition changes as the project evolves.

Don’t let unit tests change the state of the database.
• Rollback any changes or undo database changes when the tests finish.

• Doesn’t help if the same database is used for ad-hoc testing.

Try to minimize the expectations.
• Not always possible or easy.

Home state management isn’t easy, but the benefits are worth it.

45 © 2015 Intelliware Development Inc.

Beyond unit testing

© 2015 Intelliware Development Inc.

Beyond unit testing

Although Agile testing is often described in terms of creating unit tests, there

are other forms of testing that can prove useful for an agile project.

Common test types:
• Integration Tests: tests that integrate a number of units, to ensure that the parts interact

with one another properly.

• UI Tests: tests that automate interaction with a UI and the complete application codebase to

ensure that all parts function together properly.

• Performance Tests: tests that automatically capture information about the response time of

the application, possibly under load.

• Static Analysis Tests: tests that analyze code, looking for violations of coding conventions

and development rules.

• Acceptance Tests: tests that demonstrate to the customer that the requested functionality

has been implemented.

47 © 2015 Intelliware Development Inc.

Integration testing

Sometimes, the integration between multiple units is sufficiently

complex that it’s fruitful to test it.
• Especially true of application-specific code that needs to be integrated with and

configured in major frameworks.

Examples:
• Ensure that a certain number of classes are correctly configured and wired

together in a Spring configuration file.

• Ensure that a SOAP interface has been correctly configured to send or receive

the necessary data.

The goal is to integrate no more parts than absolutely necessary.

48 © 2015 Intelliware Development Inc.

Integration tests (continued)

Because more parts need to be set up and initialized, integration

tests may take longer than other types of tests.
• Integration tests might end up being run less frequently.

Still interested in this question: “Do the integration tests run quickly

enough that we can expect the developers to run them prior to

synching with source control?”
• A “yes” answer provides more value than a “no” answer, but a “no” answer can

still be helpful.

49 © 2015 Intelliware Development Inc.

UI tests

Can be considered a special case of integration tests —

essentially integrating all of the parts.

Examples:
• Web UI Tests.

• Launch the full application in a web server.

• Selenium is a very commonly-used web UI test tool.

• Mobile UI Tests

• There are many approaches to building mobile apps.

• Native, HTML5 or Mobile Application Development Platforms (MADPs)

like Worklight, Kony or Appcelerator Titanium.

• As a result, no one mobile UI test tool has become de facto standard, so

mobile UI testing is still an emerging discipline.

50 © 2015 Intelliware Development Inc.

Performance tests

• If one of the requirements (user stories) of your application involves

performance targets, testing is the ideal way to ensure that those targets

are met.

• While Agile developers often caution against premature performance

optimization, it’s also not necessarily a good idea to wait until the end of a

project to test performance.

• Performance testing often tests the integration of many of the parts of the

application, rather than just individual units.

• We frequently instrument applications to gather performance metrics, and

run a suite of performance tests that can give us a performance checkpoint

with every build.

51 © 2015 Intelliware Development Inc.

Automated performance test report

Three types of data:
• What’s the current

performance, at the highest

level (see diagram)?

• What’s the current

performance at different

layers of the application

(Service Layer, DAO Layer).

• What the historical

performance?

52 © 2015 Intelliware Development Inc.

Static analysis tests

• Developers tend to think of functional business requirements as

the things that drive unit tests.
• Unit tests can additionally be built around non-functional requirements or even

development rules or standards.

• Examples:
• Organization has a web standard to use relative units (e.g.: rems) rather than

pixel units (px) in web page style sheets (CSS).

• Write a unit test that scans all of the CSS and fails if px units are found.

• Architectural standard that Java code should not have cyclical package

dependencies.

• Write a unit test that fails if package cycles are found.

53 © 2015 Intelliware Development Inc.

Static analysis tests (continued)

• Provides proactive identification of problems, rather than after-the-fact

need for clean-up.

• Interesting consequence:
• Tests continue to enforce rules as more code or more developers are added to the project.

• Developers can’t say, “nobody told me about that rule!”.

54 © 2015 Intelliware Development Inc.

Acceptance tests

• An acceptance test is a description of a scenario that demonstrates the

expected behaviour of a software component.

• Ideally, the acceptance test is recorded in a way that’s readable by a

customer (and developers), but still supports automated execution.
• Several tools such as JBehave or Cucumber, attempt to make acceptance tests readable

while still providing automated execution.

• Acceptance Testing is often tied to the idea of “Behaviour Driven

Development”.
• Emphasizes “specifications” and “scenarios”.

• Many BDD proponents like the “Given-When-Then” structure.

• Given a particular context, when an action is taken, then a particular result is expected.

55 © 2015 Intelliware Development Inc.

56 © 2015 Intelliware Development Inc.

About Intelliware Development Inc.

Intelliware is a custom software, mobile solutions and product development

company headquartered in Toronto, Canada. Intelliware is a leader in Agile

software development practices which ensure the delivery of timely high quality

solutions for clients. Intelliware is engaged as a technical partner by a wide

range of organizations in sectors that span Financial Services, Healthcare, ICT,

Retail, Manufacturing and Government.

/company/intelliware-development-inc-

/intelliware.inc

/intelliware_inc

/GooglePlusIntelliware

www.intelliware.com

http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
http://www.linkedin.com/company/intelliware-development-inc-
https://www.facebook.com/intelliware.inc
https://www.facebook.com/intelliware.inc
https://www.facebook.com/intelliware.inc
https://twitter.com/intelliware_inc
https://twitter.com/intelliware_inc
https://plus.google.com/+Intelliware/posts
https://plus.google.com/+Intelliware/posts
http://www.intelliware.com/
http://www.intelliware.com/
http://www.intelliware.com/
http://www.intelliware.com/
http://www.intelliware.com/
http://www.intelliware.com/

© 2015 Intelliware Development Inc.

Check out other entries in our Agile methodology series

57

http://www.intelliware.com/7-myths-of-agile-development/
http://www.intelliware.com/agile-release-iteration-planning/
http://intelliware.com/agile-story-writing/
http://www.intelliware.com/agile-team-dynamics/

