
Writing Tests : Best Practices and Legacy Code
Theory and Examples

Presented by Michael Pickard

Basic Guidelines

www.intelliware.com

A.A.A.

3

Common test design pattern is:

• Arrange
• Instantiating the class being tested.

• Setting up required variables, etc.

• Act
• Execute the code under test.

• Assert
• Confirm the expected result

matches the actual.

• Verify method calls if necessary.

http://www.intelliware.com/

www.intelliware.com

Overall Goals

Tests should be:

• Maintainable
• Tests should have minimal duplication.

• Avoid testing multiple things in a single test.

• Avoid testing private/protected methods directly. {Will be addressed in a later slide}

• Trustworthy
• Does not repeat the logic from the code.

• Every test should be repeatable 100% of the time.

• Should never rely on order of execution of the tests.

• Avoid elements that change such as new Date(), Random, Threads, etc.

• Avoid using a real database or file system.

• Readable
• Follow the A.A.A. pattern as much as possible.

• Follow proper naming conventions.

• Proper use of set up and clean up methods.

• Maintain visibility of values (well named constants can be helpful).

4

http://www.intelliware.com/

www.intelliware.com

Simple Best Practices

• A test should only do one thing (Just like a method should!).
• Regular cases and error cases should not be in the same test.

• Use blatantly descriptive names.
• Makes it very easy to see what fails (and why) without looking at the code itself.

• Refer to the object under test by a specific common name .
• E.g. fixture or target

• Elements that are used in all tests should be set up in a test initializer method.

• Tests should never rely on the order of execution!

• Tests should not change the global state.
• If they do (some legacy code may make it so there is no choice) make sure that global state is reverted at the end of

the test (potentially in a test clean up method).

• Try to check for exceptions when they occur instead of generically.
• Try/catch with Assert.fail() is usually better than @Test(expected = SomeException.class)

5

http://www.intelliware.com/

Example tests that can be improved

www.intelliware.com

Test #1

7

http://www.intelliware.com/

www.intelliware.com

What was wrong?

8

• The test name tells us nothing.

• What are we actually testing? The sorter or the case modifier?

• Are we actually trying to test two things at once?

http://www.intelliware.com/

www.intelliware.com

Test #2:

9

http://www.intelliware.com/

www.intelliware.com

What was wrong?

10

• Too many asserts. Failing fast will always only show us one error even if there are multiple.

• Where does the exception happen?

http://www.intelliware.com/

www.intelliware.com

Test #3

11

http://www.intelliware.com/

www.intelliware.com

What was wrong?

12

• Tests will fail if not run in the specified order.

• We’re relying on a state change after the first test for our assert in the

second.

http://www.intelliware.com/

www.intelliware.com

Test #4

13

http://www.intelliware.com/

www.intelliware.com

What was wrong?

14

• Duplication of production code.

• Use of variable element “Date”.

http://www.intelliware.com/

www.intelliware.com

What about private methods?

15

J.B. Rainsberger states in ‘JUnit Recipes – Practical Methods for Programmer
Testing’:

“If you want to write a test for a private method, the design may be telling you that the method
does something more interesting than merely helping out the rest of the class’s public
interface. Whatever that helper method does, it is complex enough to warrant its own test, so
perhaps what you really have is a method that belongs to another class – a collaborator of
the first.”

“Moreover, by applying this refactoring, you have taken a class that had (at least) two
independent responsibilities and split it into two classes, each with its own responsibility. This
supports the Single Responsibility Principle of OO programming.”1

Or Michael Feathers in ‘Working Effectively with Legacy Code’:

“If you have the urge to test a private method, the method shouldn’t be private; if making the
method public bothers you, chances are, it is because it is part of a separate responsibility: it
should be on another class”2

1. Rainsberger, J.B. JUnit Recipes: Practical Methods for Programmer Testing. 2004. Manning Publications.

2. Feathers, Michael C. Working Effectively with Legacy Code. 2004. Prentice Hall.

http://www.intelliware.com/

www.intelliware.com

Example:

16

This is what

we really

want to be

testing in

this class.

It’s all

private

though!

http://www.intelliware.com/

www.intelliware.com 17

What we really want is…:

http://www.intelliware.com/

www.intelliware.com 18

… And:

This class is very testable:

• Two public methods.

• No complex

dependencies.

As an added bonus, we can now
swap in any kind of IFormatter.

For instance, if we want to support

different jurisdictions where the date

or currency formats are different.

http://www.intelliware.com/

Dealing with Legacy Code

www.intelliware.com

Where to start

• Legacy code is often a pseudonym for “Code with minimal testing”. 

• Our assumption is that the code works.

• Much of the code is very difficult to write tests for (potentially impossible in it’s current state!).

• Unfortunately we have NO safety net now so any refactoring we do has the potential to break
things. 

• Start with any points in the code that are straightforward to add tests for.

• Follow with the safest (typically the most simple and straightforward) refactor and then add a
test for that.

• Repeat as often as required.

20

http://www.intelliware.com/

www.intelliware.com

Some Options:

• Break a large complex method into multiple easily testable methods (or even separate classes).

• Break a large complex class (with multiple responsibilities) into multiple single responsibility
classes.

• Replace concrete objects with abstract ones.

• Use polymorphism to isolate units of testable work.

• Minimize the number of dependencies.

• Minimize constructor responsibilities (pass in variables rather than instantiate, and do minimal
work in the constructor).

Don’t be afraid to step away from a chunk of code that is too difficult to work with for now. You can
always come back to it later when you have built up more of a testing safety net.

21

http://www.intelliware.com/

www.intelliware.com

Example:

22

For our testing, we want

manager.hasValidExtension

to return what we choose.

For this first test, we are only

interested in a short name;

we want

manager.hasValidExtension

to return true.

http://www.intelliware.com/

www.intelliware.com

Option #1

(Extract & Override):

Extract the problematic

code to a new method.

Override the method in

a subclass of the class

under test.

Set up the variables to

meet the tests needs.

http://www.intelliware.com/

www.intelliware.com

Option #2

 (Test Double):

Two constructors. One

that instantiates a
FileExtensionManage

r and one that accepts

one as a parameter.

Create a subclass of the

problematic dependency

that we can set up as our

tests require.

http://www.intelliware.com/

www.intelliware.com

Continued…

Set up our fake

extension manager to

meet the test’s needs,

and pass it into the

constructor of our class

under test.

http://www.intelliware.com/

www.intelliware.com

Option #2b

 (Extract Interface):

Two constructors. One that

instantiates a

FileExtensionManager and

one that accepts an

IExtensionManager as a

parameter.

Implement the interface so

that we can set up as our tests

require.

Extract an interface for the

problematic class.

http://www.intelliware.com/

www.intelliware.com

Continued…

Set up our fake

extension manager to

meet the test’s needs,

and pass it into the

constructor of our class

under test.

http://www.intelliware.com/

www.intelliware.com

Option #3

(Adapter):

The constructor takes in
an IExtension

ManagerAdapter.

Implement the actual adapter

to wrap the
FileExtensionManager

class; delegating to it.

Extract an interface for the

adapter class.

http://www.intelliware.com/

www.intelliware.com

Continued…

Create and set up our

fake extension

manager adapter to

meet the test’s needs;

passing it into the

constructor of our class

under test.

http://www.intelliware.com/

www.intelliware.com

Option #4

Mocking:

Two constructors. One that

instantiates a
FileExtensionManager

and one that accepts one as a

parameter.

Using a mocking

framework (in this

example ‘Mockito’, create

a mock object and

configure it to return what

you need.

http://www.intelliware.com/

www.intelliware.com

Some more options:

• Use factories for object instantiation as they are easy to mock/stub (and
are a good design pattern regardless).

• Use adapter classes to communicate with external systems/libraries (as
any change to the external system only needs to be handled in a single
place in your code).

• Avoid static methods/classes as much as possible (they are easy to test in
their own right, but are difficult to mock when testing other classes).

• Avoid passing around objects when you only need is a few pieces of data
from that object (e.g. don’t pass a whole transaction to a formatter class
when all you need to format is the date!).

31

http://www.intelliware.com/

Test Suite Best Practices

www.intelliware.com

Some basic guidelines

• Unit tests should run very fast. They should run every time your local code builds.

• Integration (or full End to End) tests can be significantly slower to run, so those should
ideally be set up as manual runs on your local machine (auto on the build server though).

• Don’t aim for 100% coverage. 70-80% is typically sufficient.
• Don’t test every single input. Choose 1 or 2 vanilla cases, plus interesting (or edge) cases. Zero or null

are often interesting cases.

• Don’t test the same thing in different tests (duplication in tests is not any better than
duplication in code!)

• Don’t be afraid to drop a test that is excessively slow. You’re better off losing a little
coverage than having people stop running tests because they take too long. Discuss this
with your team first though, as better solutions may exist.

33

http://www.intelliware.com/

www.intelliware.com

Specific examples

If multiple test classes share common configuration steps, or common data

sets, then extract out a parent test class. This can be useful for:

• Instantiating mock/stub objects such as web services.

• Loading a single common set of test data (potentially into a mock

database instance).

• Maintaining a common set of constants for easy reference.

34

http://www.intelliware.com/

www.intelliware.com

Continued…

35

Use factories for generating stub objects easily (static classes are fine here).

• Useful to have generic versions of your objects (where you don’t care about the

contents), as well as specific ones where one or more fields have data you are

interested in.

http://www.intelliware.com/

www.intelliware.com

Continued…

36

Extract common assertions to separate methods (or into parent test classes) to

minimize duplication.

• Once again, generic and specific versions can be useful at times.

http://www.intelliware.com/

Thank You.

